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Abstract: The intelligent mine has successfully attained the objective of cost reduction and 

efficiency enhancement, hence optimizing corporate advantages, through the 

implementation of a complete information system for mine safety production that facilitates 

connectivity among users at all hierarchical levels and diverse roles. Challenges such as 

unbalanced equipment layout and suboptimal efficiency have emerged as impediments to 

the advancement of intelligent mining operations. This scholarly paper presents a novel 

objective function that seeks to optimize earnings over a span of five years. The objective 

function incorporates binary 0-1 decision variables and auxiliary variables. The last step 

involves the establishment of many constraints, such as the stipulation for a minimum of 

three distinct excavators, limitations on the values assigned to decision and auxiliary 

variables, and restrictions on the quantities of each excav model. In conclusion, the 

utilization of the Kaiwu SDK in the simulated annealing solver yielded a viable solution for 

mining equipment, thereby offering a coherent strategy for the advancement of intelligent 

mining operations and the arrangement of mining equipment. 

Keywords: Equipment Configuration; Maximum Profit;0-1 Variables; QUBO Model 
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1. Introduction 

The evolution of coal mining has undergone distinct phases, inclusive of manual mining, 

mechanized mining, and automated mining. At now, there is a notable progression towards 

the use of safe and environmentally sustainable intelligent mining practices. During the 

course of this development, several concerns have emerged, including inappropriate 

allocation of equipment, suboptimal mining efficiency, and an imbalanced correlation 

between investment and output. A study conducted by Zhou[1] et al. examined the 

significance of equipment allocation in the context of large-scale mine production operations. 

A study conducted by Nong Dehai et al. involved the computation of the total cost of 

ownership (TCO) in order to ascertain the most advantageous equipment distribution strategy. 

Nevertheless, the majority of these models exhibit computational complexity, time-intensive 

processes, and necessitate substantial storage capacity, hence impeding the advancement of 

intelligent mining. 

In view of its distinct benefits in the computation and simulation of intricate systems, the 

advancement of quantum computing[2] possesses substantial scientific and societal 

significance. It assumes a pivotal role in domains such as machine learning and operations 

research, whereby conventional computer methodologies encounter difficulties. The 

Quadratic Unconstrained Binary Optimization (QUBO) model[3]-错误!未找到引用源。 is 

one of the most commonly employed simulation models in quantum computing. The 

predominant approach to mining equipment allocation study relies on conventional 

optimization models, which are characterized by their sluggishness and complexity in solving 

problems. In order to overcome the limits inherent in conventional models and facilitate the 

progress of intelligent mining, this study introduces a quadratic constrained maximization 

model that takes into account diverse real-world constraints. Subsequently, this model is 

converted into a QUBO model. A supplementary variable with a range of 0-1 is incorporated 

into the conventional QUBO model in order to enhance computational efficiency and render 

the outcomes more useful in practical applications. The primary contributions of this study 

are outlined as follows:  

1) This paper presents a pragmatic analysis of a mining development dilemma.  

2) Developing a comprehensive multi-objective (QUBO) model.  

3) The incorporation of an additional 0-1 variable into the conventional QUBO model 

represents a potential enhancement. 

2. Problem Modeling 

2.1 Problem Statement  

A intelligent mine company that is about to start operations has an initial capital of 24 

million yuan and plans to operate for five years. A comprehensive equipment configuration 

and operation plan needs to be designed, considering seven factors: excavator bucket capacity, 

excavator operating efficiency, mining truck loading capacity, fuel consumption, price, labor 

cost, and maintenance cost. Based on these factors, the plan should determine the models and 
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quantities of excavators to be purchased and establish the matching relationship between 

excavators and mining trucks to maximize total profit over five years. 

Four types of excavators are available, with equipment parameters shown in Table 1. 

Three types of mining trucks have already been purchased, with quantities of 7, 7, and 3 

respectively, and their parameters are shown in Table 2. Both excavators and mining trucks 

are assumed to work 20 days a month, 8 hours a day, with a fuel price of 7 yuan per liter and 

an ore price of 20 yuan per cubic meter. 

Table 1. Parameters of Four Excavators 

Model 
Bucket 

Capacity 

Operating 

Efficiency 

Fuel 

Consumption 

Purchase 

Price 

Labor 

Cost 

Maintena

nce Cost 

Excavator1 0.9 190 28 100 7000 1000 

Excavator2 1.2 175 30 140 7500 1500 

Excavator3 1.8 165 34 200 8500 2000 

Excavator4 2.1 150 38 320 9000 3000 

Table 2. Parameters of Three Types of Mining Trucks 

Model Fuel Consumption Labor Cost Maintenance Cost 

Mining Truck1 18 6000 2000 

Mining Truck2 22 7000 3000 

Mining Truck2 27 8000 4000 

In the final configuration plan, the following constraints need to be considered: 

1. Given the materials and efficiency of the excavators and mining trucks, large 

excavators cannot be matched with very small mining trucks, and small excavators will not 

be matched with very large mining trucks. The matching relationships between different 

models of excavators and mining trucks are shown in Table 3. 

Table 3. Matching Relationships Between Excavators and Mining Trucks 

 

Mining Truck 1 Mining Truck 2 Mining Truck 3 

Excavator1 1 \ \ 

Excavator2 2 1 \ 

Excavator3 2 2 1 

Excavator4 \ 2 1 

Note: For example, for Excavator 2, at least two Mining Trucks 1 or one Mining Truck 2 are 

required to ensure stable operation. 

2. In the actual operation of the mine, small excavators are needed for maintenance tasks 

such as road repair, platform construction, and handling edge materials. At the same time, to 

ensure overall operational efficiency, a certain number of large excavators are required. This 

can be summarized as the total number of excavator models must not be less than three. 
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The efficiency during the operation of the intelligent mine system is calculated according 

to the following rules: 

1. If the matching relationship between excavators and mining trucks exactly equals or 

exceeds the values in the table, the daily output is based on the efficiency of the excavator. 

2. If the number of mining trucks allocated to an excavator is less, the excavator may 

spend some time waiting for trucks. In this case, the daily output of the excavator is the 

efficiency multiplied by the corresponding ratio. For example, if an excavator is ideally 

matched with 2 trucks but is only assigned 1 truck, the excavator's daily output will be half 

of its standard output. 

2.2 QUBO Model Principle 

The QUBO[6] model is an optimization model widely used in fields such as 

combinatorial optimization, signal processing, and quantum computing. The basic 

mathematical form of the QUBO model is as follows: 

min ∑ β
ij
xixj

xi,xj∈θ,i≠j

+ ∑ αixi

xi∈θ

(1) 

where, xi and  xj be binary 0-1 variables, and θ  be the set of binary 0-1 variables, 

θ={x1, x2 , ..., xn}, where n is the number of 0-1 variables. β
ij
 represents the coefficients of 

the quadratic terms in the above model, and αi represents the coefficients of the linear terms 

in the model.  

Additionally, due to the special nature of binary 0-1 variables, where xi=xi
2, the QUBO 

model can be expressed in matrix form as follows: 

minXTQX (2) 

X={x1,x2,...,xn}T；𝑄 is the coefficient matrix of the QUBO model,In the symmetric case, 

Q
ii
=αi，Q

ij
=Q

ji
=

βij

2
, i≠j. 

2.3 Ising Model Principle 

The Ising[7] model is a type of random process model used to describe phase transitions 

in materials. In the field of quantum computing, this model is commonly used to describe the 

interactions between quantum bits and their coupling relationships. It is a common tool in 

quantum computing for solving optimization problems. The decision variables in the Ising 

problem take values in {-1,1}. The objective function contains N variables s=[s1,…,sn], 

where si∈ {-1,1}. 

In general, a QUBO problem can be equivalently represented using the Ising model. By 

transforming the variables using xi→(I+σi)/2, the original QUBO model's decision variable 

domain {0,1} is mapped to the Ising model's decision variable domain {-1,1} . The 

transformation process and the resulting objective function in the Ising problem are expressed 

as follows: 

Jij=
1

4
Q

ij
,hi=-

1

2
(ci+ ∑ Q

ij

jϵX

) (3) 
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min ∑ Jijyiyj

(i,j)∈E

+ ∑ hiyi

i∈x

(4) 

where, 𝐽 and ℎ are the quadratic and linear coefficients of the Ising model, respectively, with 

y
i
∈{-1,1}, i∈X=[1,2,3……,N]. By using the Ising model combined with methods such as 

quantum annealing, the optimal solution to the objective function can be obtained. 

2.4 Symbol Description 

 Due to the use of numerous variables in this paper, the explanations for some important 

variables are provided in Table 4. 

Table 4. Variable Descriptions 

Symbol Description 

uij Whether to purchase j units of Excavator Model i 

y
ik

 Whether Excavator Model i is matched with Mining Truck j 

q
i
 Bucket capacity of Excavator Model i, q

i
∈Q 

wi Standard operating efficiency of Excavator Model i, wi∈W 

p
i
 Purchase price of Excavator Model i, p

i
∈P 

ri Fuel consumption of Excavator Model i, ri∈R 

hi Labor cost of Excavator Model i, hi∈H 

si Maintenance cost of Excavator Model i, si∈S 

tm Fuel consumption of Mining Truck Model m, tm∈T 

dm Labor cost of Mining Truck Model m, dm∈D 

vm Maintenance cost of Mining Truck Model m, vm∈V 

fm Number of Mining Truck Model m, fm∈F 

β
ij
 Standard quantity of Mining Truck Model j matched with Excavator Model i 

Funding Initial startup capital 

2.5 Construction of the Objective Function 

According to the problem statement, the goal is to maximize the total profit over 5 years, 

considering the models and quantities of purchased excavators and the matching relationships 

between excavators and mining trucks. The profit calculation formula is: 

Profit=Revenue-Various Costs (5) 

Based on the problem context, the cost calculation formula is: 

Cost=Excavator Cost+Mining Truck Cost (6) 

Where the cost for each excavator and mining truck is calculated as follows: 

Excavator Cost=Purchase+Fuel+Labor Cost+Maintenance Cost (7) 

Mining TruckCost=Fuel Consumption+LaborCost+Maintenance Cost (8) 

The formula for daily revenue is: 

Daily Revenue=Quantity×Bucket Capacity×Efficiency×8×20 (9) 

Therefore, the formula for revenue over five years is: 

Revenue=E_Capacity×S_Efficiency×8×20×20×12×5+Capital (10) 
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E_Capacity  stands for Excavator Bucket Capacity; S_Efficiency  stands for Standard 

Efficiency 

It is noted that if the actual number of matched mining trucks exceeds the standard 

quantity, the efficiency of the excavator remains unchanged. If it is less than the standard 

quantity, the efficiency of the excavator will vary according to the number of matched mining 

trucks. Therefore, this paper introduces a weight α  to modify the revenue calculation 

formula. The final formula for revenue over five years is: 

Revenue=E_Capacity×A_ Efficiency×8×20×20×12×5+Capital (11) 

A_ Efficiency stands for Actual Efficiency; 

Where the actual efficiency is calculated using: 

A_Efficiency=α×S_Efficiency (12) 

α=
Actual Number of Matched Mining Trucks

Standard Number of Matched Trucks
,α∈(0,1) (13) 

Note: When the actual number of matched mining trucks ≥ standard number of matched 

trucks, α=1. 

Let C represent various costs, q
i
 be the bucket capacity of Excavator Model i, wi be 

the standard operating efficiency, p
i
 be the purchase price, ri be the fuel consumption, hi 

be the labor cost, si be the maintenance cost of Excavator Model i , tm  be the fuel 

consumption, dm be the labor cost, vm be the maintenance cost, and fm be the number of 

Mining Truck Model mmm. Introduce the binary 0-1 variable: 

uij= {
0，No purchase of j units of Excavator Model i,

1，purchase of j units of Excavator Model i.
 

Due to the limitations on the number of mining trucks, and without considering costs, 

the maximum number of excavators of each model that can be purchased, given the matching 

table and reasonable resource allocation, is shown in Table 5. 

Table 5: Maximum Purchase Quantities for Each Excavator Model 

Model Quantity 

Excavator 1 7 

Excavator 2 7 

Excavator 3 4 

Excavator 4 4 

where, the set is i∈{1,2,3,4}，j∈{1,2,...,7}. 

In the traditional QUBO model, there is only one binary 0-1 variable, which makes it 

difficult to represent and solve complex problems. Therefore, this paper introduces an 

additional auxiliary binary 0-1 variable y
ik

 to improve the traditional QUBO model, in 

addition to the existing uij. 

y
ik

= {
0,Excavator Model i does not match with Mining Truck numbered k,

1,Excavator Model i matches with Mining Truck numbered k.
 

Mining trucks are numbered sequentially from Mining Truck 1 to Mining Truck 3, with 

the numbering set K={1,2,3,...,1}. k1-7 are the numbers for Mining Truck Model 1, k8-14 
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are for Mining Truck Model 2, and k15-17 are for Mining Truck Model 3. The variable y
ik

 

has certain constraints: if y
12

=1, then y
11

=1; if y
11

= 1, y
12

 can be either 0 or 1. 

Thus, the mathematical expressions for various costs are derived from equations (11), 

(12), and (13) as follows: 

C= ∑ ∑ juij

7

j=1

4

i=1

p
i
+ ∑ ∑ juij(ri×7×8×20+hi+si)×12×5

7

j=1

4

i=1

+ ∑ fm(tm×8×20+dm+vm)×12×5

3

m=1

        (14) 

The mathematical expression for the total revenue is as follows: 

M= (∑ ∑ juijqi
αwi×20×8×20×12×5

7

j=1

4

i=1

) +Funding (15) 

α=
∑ y

ik
17
k=1

β
ij

,i∈{1,2,3,4} (16) 

Let M be the revenue, Funding be the initial capital, and β
ij
 be the standard number of 

Mining Trucks Model j matched with Excavator Model i. Due to the nature of the decision 

variables, we have uij=uij
2. 

Max (∑ ∑ 192000juij
2
q

i
αwi

7

j=1

4

i=1

) +Funding- 

(∑ ∑ juij
2

7

j=1

4

i=1

p
i
+ ∑ ∑ juij

2
(1120ri+hi+si)×60

7

j=1

4

i=1

+ ∑ fm(160tm+dm+vm)×60

3

m=1

)        (17) 

2.6 Construction of Constraint Conditions 

Based on the problem context and the limitations of variable values, the following five 

constraints must be satisfied: 

(1) There must be at least three types of excavators. 

(2) Constraints on the values of uij variables. 

(3) Limits on the quantity of each type of excavator. 

(4) The total number of mining trucks matched with all excavators must not exceed the 

available number of mining trucks. 

(5) Constraints on the types of mining trucks that each type of excavator can match. 

According to the problem statement, to avoid the impact of various unexpected situations 

on mining operations, the number of excavator types must be at least three. Therefore, the 

first constraint established to limit the number of excavator types is as follows: 

∑ ∑ uij

7

j=1

4

i=1

≥3 (18) 

Here, a slack variable a2 is introduced to transform the inequality constraint into an 

equality, as follows: 
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∑ ∑ uij

7

j=1

4

i=1

-a2=3 (19) 

Considering the meaning of the binary 0-1 variable uij, the second constraint based on 

the limitations of uij values is as follows: 

∑ uij

7

j=1

≤1,i∈{1,2,3,4} (20) 

Based on Table 5, it can be seen that Excavator Models 3 and 4 can each be purchased 

up to four units without considering costs. 

1）Quantity Limitation for Excavator Model 3 

∑ u3j

7

j=5

=0 (21) 

2）Quantity Limitation for Excavator Model 4 

∑ u4j

7

j=5

=0 (22) 

Based on equations (17) and (18), the third constraint condition established for the 

quantity limits of each type of excavator is as follows: 

∑ ∑ uij

7

j=5

4

i=3

=0 (23) 

Due to the limited number of mining trucks, the total number of mining trucks matched 

with all excavators cannot exceed the available number of mining trucks. The fourth 

constraint condition based on the number of mining trucks is as follows: 

1）Constraint on the number of Mining Truck Model 1 

∑ ∑ y
ik

7

k=1

4

i=1

=7 (24) 

2）Constraint on the number of Mining Truck Model 2 

∑ ∑ y
ik

14

k=8

4

i=1

=7 (25) 

3）Constraint on the number of Mining Truck Model 3 

∑ ∑ y
ik

17

k=15

4

i=1

=3 (26) 

Considering the rationality of resource allocation, large excavators cannot be matched 

with small mining trucks and small excavators cannot be matched with large mining trucks. 

Therefore, the fifth constraint condition, based on the given standard excavator-to-mining 

truck matching table, is as follows: 

1）Constraint on the types of mining trucks matched with Excavator Model 1 
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∑ y
1k

17

k=8

=0 (27) 

The constraints on the values of y
1k

 are as follows: 

y
1(k+1)≤y

1k
,k∈{1,2,...,7} (28) 

Based on equations (27) and (28), the constraint on the types of mining trucks matched 

with Excavator Model 1 is as follows: 

y
1(k+1)≤y

1k
,k∈{1,2,...,7} (29) 

y
18

=0,i=1，k=8 (30) 

The constraint principle for Excavator Model 2 is the same as above. 

2）Constraint on the types of mining trucks matched with Excavator Model 2 

y
2(k+1)≤y

2k
,k∈{1,2,...,14} (31) 

y
215

=0,i=2，k=15 (32) 

3）Constraint on the types of mining trucks matched with Excavator Model 3 

There are no type constraints for Excavator Model 3, so Excavator Model 3 only has 

constraints on the values of the y
ik

 variable. 

y
3(k+1)≤y

3k
,k∈K (33) 

4）Constraint on the types of mining trucks matched with Excavator Model 4 

∑ y
2k

7

k=1

=0 (34) 

y
4(k+1)≤y

4k
,k∈{8,9,...,17} (35) 

5）Constraint on the matching relationship between each excavator and mining truck 

∑ y
ik

4

i=1

≤1,k∈K (36) 

The corresponding values for some variables are as follows: 

q
i
=[0.9,1.2,1.8,2.1],wi=[190,175,165,150], 

ri=[28,30,34,38],p
i
=[100,140,200,320], 

hi=[7000,7500,8500,9000],si=[1000,1500,2000,3000], 

tm=[18,22,27],dm=[6000,7000,8000], 

vm=[2000,3000,4000],fm=[7,7,3]. 

According to the common constraint conversion[8] table shown in Table 6, the above 

quadratic constrained binary optimization model can be rewritten as a quadratic 

unconstrained binary optimization (QUBO) model by adding a penalty term PPP, as shown 

in Equation (37). 

Table 6. Common Constraint Conversion Table 
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Classical Constraint Equivalent Penalty 

𝑥 + 𝑦 ≤ 1 𝑃(𝑥𝑦) 

𝑥 + 𝑦 ≥ 1 𝑃(1 − 𝑥 − 𝑦 − 𝑥𝑦) 

𝑥 + 𝑦 = 1 𝑃(1 − 𝑥 − 𝑦 − 2𝑥𝑦) 

𝑥 ≤ 𝑦 𝑃(𝑥 − 𝑥𝑦) 

𝑥1 + 𝑥2 + 𝑥3 ≤ 1 𝑃(𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) 

𝑥 = 𝑦 𝑃(𝑥 + 𝑦 − 𝑥𝑦) 

min  — (∑ ∑ 192000juij
2
q

i
αwi

7

j=1

4

i=1

) +D- (∑ ∑ juij
2

7

j=1

4

i=1

p
i
+ ∑ ∑ juij

2(1120ri+hi+si)×60

7

j=1

4

i=1

+ ∑ fm(160tm+dm+vm)×60

3

m=1

) 

+P (∑ ∑ uij

7

j=1

4

i=1

-a2-3)

2

+P (∏ uij

7

j=1

)

2

+P (∑ ∑ y
ik

7

k=1

4

i=1

-7)

2

+P (∑ ∑ y
ik

14

k=8

4

i=1

-7)

2

+P (∑ ∑ y
ik

17

k=15

4

i=1

-3)

2

 

+P (∑ ∑ y
ik

17

k=15

4

i=1

-3)

2

+P (y
1(k+1)-y1(k+1)y1k

)
2

+P (y
2(k+1)-y2(k+1)y2k

)
2

+P (y
3(k+1)-y3(k+1)y

3k
)

2

+ 

P (y
4(k+1)-y4(k+1)y4k

)
2

+P(y
18

)
2
+P(y

215
)

2
+P (∑ y

2k

7

k=1

)

2

+P (∑ ∑ uij

7

j=5

4

i=3

)

2

+P (∏ y
ik

4

i=1

)

2

                  (37) 

3. Results 

The objective function is further simplified to the following form: 

min  -XTQX 

where X=(u11,u12,……u47,y
1
,y

2
……y

17
,a2)

43
 is a 43-dimensional vector, and QQQ is the 

QUBO coefficient matrix, shaped as a (43,43) matrix. The QUBO model is converted to an 

Ising model and solved using the simulated annealing solver built into Kaiwu SDK on the 

Boson Quantum Platform (https://developer.qboson.com/login) to obtain the optimal 

decision variables X and auxiliary variables Y. 

Finally, after calculation, setting P=10000, the excavator purchasing schemes obtained 

using the Kaiwu SDK simulated annealing solver are shown in Tables 7 and 8. 

Table 7. Excavator Purchasing Scheme Obtained from the Simulated Annealing Solver 

Model Quantity 

Excavator 1 7 

Excavator 2 1 

Excavator 3 3 

Excavator 4 3 

Table 8: Excavator-to-Mining Truck Matching Relationship Obtained from the Simulated 

Annealing Solver 

https://developer.qboson.com/login
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 Mining Truck 1 Mining Truck 2 Mining Truck 3 

Excavator 1 7 \ \ 

Excavator 2 0 1 \ 

Excavator 3 0 2 0 

Excavator 4 \ 0 1 

The final matching relationships between the mining trucks and excavators, as well as 

the corresponding quantities of each excavator model, can be derived from Tables 7 and 8. 

4. Discussion 

This paper utilizes the QUBO model to address the configuration problem of mining 

equipment, aiming to maximize the mining benefits for the company. By introducing two 

binary 0-1 variables, the traditional QUBO model has been improved to enhance its 

practicality. Using the 0-1 variables uij  and y
ik

 as decision variables to represent the 

quantity relationships of excavators and the matching relationships between excavators and 

mining trucks respectively, with the objective of profit maximization as the objective 

function, and constraints including the limitation of matching relationships and variable 

values, the QUBO model for mining equipment configuration was established based on the 

optimized model for mining truck equipment configuration. The research results indicate that 

when solving the QUBO model, attention needs to be focused only on the Q matrix, which 

simplifies the computation, provides good solutions, and achieves fast solving speeds. 

Overall, the improved QUBO model is easier to establish and solve compared to traditional 

optimization and QUBO models, and it provides effective solutions for mining equipment 

configuration. The computational complexity and time required for the QUBO model are 

significantly lower than those of traditional optimization models. This indicates that the 

QUBO model outperforms traditional optimization models in terms of effectiveness. 

5. Conclusions 

In the end, the enhanced QUBO model exhibits a straightforward framework for 

establishment and resolution, thereby offering a proficient resolution for the allocation of 

mining equipment. In addition to its application in mining equipment, the QUBO model may 

also be extended to alternative domains, including offshore resource allocation, personnel 

scheduling, and logistics distribution. In the forthcoming study, the QUBO model will be 

utilized to investigate route optimization in logistics distribution and devise an enhanced 

solving algorithm, thereby making a valuable contribution to the progress of quantum 

computing. 
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